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MULTI-TONE ADAPTIVE VIBRATION ISOLATION OF ENGINEERING STRU~URES

Zahidul  Rahman’,  John Spanos2 and David Bayard~
Jet Propulsion Laboratory, Catifomia Inslitute  of Technology

4800 Oak Grove Drive, PasadenLCA91109

We present a multi-tone narrow band tracking
control algorithm to isotate  periodic disturbances
from engineering structures. Conditions for fast
convergence of control parameters are discussed. It
is shown that the choice of appropriate tap delay
time and number of taps is important in achieving
good convergence. We implemented the algorithm in
a digitat computer to attenuate a two-tone periodic
disturbance from a flexible aluminum truss structure.
Experimental results showed that disturbance
rejection of over 25 dB was achieved.

Introduction

Machinery vibration is an important issue in many
engineering applications [1], including spacx
structures, aircrak dams and commercial buildings.
In space structures, high speed reaction wheels for
on board attitude control systems and cryo-coolers
for on board imaging instruments can generate
unacceptable levels of vibration, Similarly, engines
in aircraf~ large generators in dams, large
transformers in power stations, and escalators or
ventilation fans in commercial buildings can also
generate undesirable levels of vibration in these
structures, While these disturbances are periodic in
nature, their frequency, magnitude, and phase may
vary slowly with time. The propagation of such
disturbances, being magnified by the resortant
dynamics, can interfere with the normal operation of
sensitive instruments present in the structure. Also
this can ause fatigue damage to the structure or can
be very annoying to its occupants

One of the most popular methods to counter the
problem is to place a passive mount (passive
isolation) between the disturbance source and the
structure. A passive mount is essentially a
combination of a soft spring and a damper that can
significantly reduce disturbance propagation from
the source. While a soft passive mount may be
necessary to attenuate a broad band disturbance, it
introduces a soft connection that may not be
acceptable from structural integrity considerations.

Many investigators including those in reference [1-5]
have proposed to augment passive mounts with
closed loop feedback systems i.e., active isolation to
improve total isolation performance. Such broad
band isolation suffers from the same problem as
passive isolation, Broad band feedback control
essentially further softens [6] the existing passive
mount and in-turn lowers the comer frequency to
introduce additional isolation performance, Also, in
this control scheme it is difficult to obtain good
performance over a large frequency band, since such
control scheme requires a gradual roll off for
stability.

Investigators including those in reference [4,5]
presented narrow band tracking type feedback
control methods, variants of the Last Mean Square-s
(1.MS)  algorithm [10,12], for isolation of periodic
disturbances by softening the passive mount
selectively only at the disturbance frequencies. 1 n
this method, the general softening of the mount was
avoided and structural integrity was not
compromised Performance over 40 dB was achieved
at tbc targeted frequencies, The method presented in
reference [4] uses phase difference networks [7,8 ] to
accommodate very large variations in the fiequtmc  y
of each harmonic. However, in both schemes, each
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disturbance harmonic lMS to bc dealt with separately.. . This makes the schcmcs  very cumbersome and
computalional]y more demanding when the
disturbance consists of more than one harmonic, In
this paper, wc discuss a method  for implcmcnling
the LMS algorithm to isolate a disturbance
consisting of multiple harmonics whose frequencies
(amplitudes and phase) may vary over large ranges.
Wc discuss the convcrgcncc  properties of the
method and prcscnl a numerical scheme to maximize
the convergence rate by choosing appropriate
number of taps (control weigh(s) and tap delay time
(sequential sampling time).

Figure 1 Vibration isolation experiment setup

Wc have implemented the medmd  to isotate  a
disturbance source from a flexible aluminum truss
structure. The cxperirmmtat  setup (Figure 1)
simulates an elastic structure with a vibrating
machine mounted on it, The isolator, ptaced between
the structure and the vibration source, consists of a
voice coil, a set of ftcxurcs  and a 4 Kg mass.  The
stiffness of the flcxure  along with the mass
determines the pamivc  isolation break frequency
which in our experiment is about 21 Hz. A load cell
(performance sensor) installed between the isolator
and the structure measures the force transmitted to
the structure and provides the feedback signal in the
active isolation control loop. The disturbance source
is a proof-mass shaker suspended from the ceiling
and attached to the isolation fixture via a stinger
conneaor.  The proof mass used in the experiment is
approximately 2 Kg. System identification
experiments on the structure (Figure 5) revealed the
presence of approximately 14 Iightty  damped modes
bCIOW 100 H7.,

~M.S Algorithm

Figure 2 presents the continuous-time LMS
algorithm framework, consistent with the treatment
presented in [10]. Wc discuss convergence properties
of the algorithm and some new results are presented
for the cm.e where ttIC  weights (W i) are
overparametrizcd,

We consider the disturbance signal e~(t) consists of a
sum of sinusoids at different frequencies, amplitudes
and phases. It is desired to cancel the disturbance
sigl~al cd(t) with the col~tro] sigt]al  u(f) such that the
l)ct en or sigl]al  e = f’d  -

u is driven to zero. Note
that the plant is assumed to be unity in the analysis.
This is achieved by a plant inversion and is
discussed in a Ialcr section, The error signal e(t) is
measured directly with a sensor, while the signal
cd(t) is not available for measurement, It is assumed
that cd(l) can be written as a linear combination of
the elements of the known vector x(l) E RN, i.e.,
there is a constant veclor  WO ● RN, such that,

cd(r) = w“~x(t) (1)
for all ~ 0,

In practice, the components of the vector x(t) are
gencrtited by filtering the measured reference input
signal ~(t) which is correlated with e~f). The
existence of a constant vector # in equation 1
requires that the components of vector -x(t) span cd(t)
forall  f>O.

If WO is known, then the signaled can be canceled by
the ideal signal  U“ constructed as,

U“ = Worx(f) (2)
However, in practice the parameter vector }fl is not
known, and the ideal control signal (2) is replaced
by the estimated quantity,

u = wT(f)x(t)

Here W{I) is an estimate of ~, which
real-time using the L,MS algorithm,

w = ~(f)e(t)

(3)
is tuned in

(4)
with adaptation gain p >0. Let the tracking error
be defined as,

e(l) = cd(f) -u(f)

and the parameter el~or be defined as,
$(f) = W“ - w(t)

Usin~ equations 1,3,5 and 6, the tracking

(5)

(6)
and the

parameter errors can be related as follows,
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Figure 2

e(t) =$~(f)x(f)
assuming that the true parameter # does

LLI
Continuous-time LMS algorithm [1 O]

(7)
not vary

with time.  The time derivative of equation 6 and the
substitution of equations 4 and 7 yield,

*= WO-W=-W (8)
The equation above characterizes the propagation of
the parameter error.

ConvcrEcnce  PrQwties

We define the Lyapunov  function,
V=+$T4 (9)

By Ltiillg the time derivative of the above equation
and then rcarran  ging we get,

V=–pe$Tx=--pe2 -S0 (lo)
This proves that q is bounded. Since r(l) is
bounded, e(l) is also bounded due to equation 7.
Furthermore, e(t) approaches zero since -i(l) is
assumed to be bounded [ 10].

Reference [11 ] establishes the following results
which indicates the rate of convergence.

If x(f)  c RN is a bounded periodic vector function of
1>0, with period Tc,, i.e.,

Ilx(t)ll<q  < ~; for all 120 (11)
x(?+- 7.) = ~(f);  for all f 20 (12)

and if there exists a W“ such that (1) holds for all
~ > (), and tilat tJre U@ algorithm is used to tune
the parameter vector w using txfualions  3-8, then the
error r in equation 7 approaches zero exponentially,
i.e.,

Ie(l)ls l~ea70 11+(0)1  Ie-w (13)

u = Vkmin (14)

(15)
10 J

o
where k “u” denotes the smatlcst  positive eigenvaluc
of the symmetric non-negative definite matrix
M = MT 20. This result indicates that the ralc of
convergence of the error e(t) is exponential and is
determined by the smallest nonzero eigenvaluc  of the
correlation matrix M. Note that the result is
nonstandard in the sense that w can be
overparametrimxl  and M can be singular. The error
c o n v e r g e s  exponcntiafly  fast  as long as the
correlation matrix M has at least one nonzcro
eigenvafue,  and as long as there exists a paranwler
vector W“ satisfying equation 1.
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Figure 3 Convergence measure S(N,7) for two tone problem  witi o z =20 1, over o] E [5 ,50 Hz],
a.. a function of Llp delay time 7’ and number of taps N

In theory, the raw of convergence rx in equation 14
can be made arbitrarily Iargc by increasing p .
However this is not possible in practice since there
will be limitations on the size of p due to
nonidcalilics  such as the effect of the sampling delay
which will be present when the scheme is
implemented in a digital computer. To take into
account the effect of sampling delay, we discrelize
the adaptation law (equation 4) using Euler’s
method,

w~ = w&_l + ‘~~.le~.l (16)

where the discrete-time adaptation gain ~ is related
to ttrc continuous-time gain p by,

jj=~p (17)

and 7’ is the sampling period. It is well known from
the li~cramre  [12] that a sufficient condition for
convergence when using the discrete adaptation law
(equation 16) is,

F+ (18)
ma x

where L “,M denotes the Iargcst  eigcnvalue  of M.
Hence the effect of sampling delay is to restrict the
choice of v to a quantity bounded by

2psi ~ (19)
mu.  .

This indicates that a more realistic bound on the
convergence rate is given by,

2kn)in 2
a = f.lk “,i” S

k 1=—
(20)

max. K1,7”

where the finite condition number K 1 of M is

defined as
km

“=~
(21)

Eqwition 20 indicates that the rate of convergence of
the error e(f) to mxo is increased as the finite
condition number K I or the sampling period 7’ are
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rcduccd in sim NOW that K ~ is not indcpcndcn(  of 7’. .
in our formulation as can be seen in the ncxl scclion.

Two-tone Problem

in this  scclion.  the problcm  of adaptive vibration
suppression is considered for a disturbance ed

which is composed of two tones at frequencies 01
and o z .

LCt the measured rcfcrcnce signal ~(l) be given by
the following sum of sinusoids,

~(f) = Al sin(wl~ +91)+ A2 sin(w2f -t 92) (22)
Define  Lhc filters F,(s) in terms of lap delay lines

with a scqucntiai  delay of T

q(s)  = e-(l-’)$T, 1 = 1, . . . . ..N (23)

The components of x = [.x1, . . . . . . . x~ IT m Obhincd
by filtering ~(f) through the inters in cqualion  23,
i,c,,

x~(.$)=q(sg(s),  1=1, . . . . ..N (24)

where .x(s) and <($) arc the Laplace transforms of ~(t)

and &(l) rcspcclivcly.  Then the correlation matrix M,
as defined in equation 15, can be calculated in
closed fom~ as,

~Oi7
2 A?

M(A,,(!),7’,A2,6 q7; N)=~T* COS20i7’
k I

l~s(N_l)@iT

The I~otatiou  M(A1, o ~ i“, AZ,0 z 7’, N) emphasizes
the dependence on the frequency o,, 01 ~ and
amplitudes Al, AZ of each harmonic, as well as the
tap-delay time 7’ and the number of taps N.

10’
Hz

Figure 4 Experimentally realized  LMS film with damped integrator.

102
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Figure 5 Measured plant frequency response function (a) and plant cancellation (b).

If the disturbance frequencies o) ~ and to ~ arc due
to a single vibration source, they are often not
completely arbitrary, but rather can be related in
some deterministic manner, One common situation
is when 0 ~ is the second superhannonic  of a
fundamental at co* i.e., the frequencies are related as

O* =201 (26)
By using the equation 26 and le(ting the amplitude
of each harmonic component of x(t) be unity (i.e.,
Al =Aj= 1 ), the expression for M in equation 26
simplifies to,

M(A1,OIT,  Az, wz7’, iV)=M(J7’,  iV) ( 2 7 )

where ~ = 6), /2rr . Note that the properties of M

(i.e., K]) can convcnicndy be plotted against the
dimensionless quanti(y  fl” and the number of taps
N.

We used a simple graphical procedure for choosing T
and N for our two lone harmonic disturbance
cxpcrimcnt  which is described next. Let the

fundamental harmonic frequency o), of the
disturbance vary between a known bound,

O<(O1<;— (28)
Convergence results indicate that it is desirable to
keep l/(Kl 7) as large as possible over the working
bandwidth [Q,; ]. We calculate the worst case

—
value of l/(K17)  over the region Q <01 <0 for
various value of N and T. This defines the surface,

S(N, T) = n:~~
2

(29)
— K, (M(f7’, N)) 7’

Note that the criteria (29) can be frequency weighkxt
to incorporate prior knowledge concerning UN!
location of the disturbance tone. The surface.
equalion  29, is plotled in figure 3 as a function of N
and T using the frequency range from 5 H7, ( Q J u)
50 Hz (a ), Good values for N and Tfor this case ;irc
easily seen as points where the surface is highcw
Whi]c  the convergence measure generally improves
with larger number of taps, an arbitrarily small or
large tap delay time will have an adverse effec( im
the convergence. For a small number of taps (below
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spectrum for the two tone problem

30) or an arbitrarily small  tap delay time (less than 2
milliseconds), lhc convergence measure is very
small. NO(C that when the tap delay time is near 5
milliseconds, the convergence measure approaches
mm since the rank of the correlation matrix
approachcszcm.  ‘Ilis indicates that the disturbance
componcnl at co* = 20 I = 100 H7 (whose period is
10 milliseconds) can no Iongcr be suppressed by the
implementation,

If, as suggcslcd  in single tone cases, wc had chosen
1/4 of the wavelength of the bighcst frequency value
of o*,  the tap delay time would be 2.5 milliseconds.
However as can be seen from Figure 3 that a more
appropriate choice for the tap dctay time is 3.5
milliseconds with 50 taps. This was
the experiment described next.

Ex-perimeM

The compensator, discrclized  at

implemented in

2 0 4 8  Hz, was
implcmcntcd  on a Hcurikon  HKV4F/33MHz 68040
proecssor  running under VxWorks  operating systcm.
The conrrollcr  had two cornponcnts:  1) the proposed

LMS algorithm and 2j an approximate plant inverse
filter,

In the LMS algorithm, the number of taps
(components of x) and the tap delay time (7) were 50
and 3,5 milliseconds respectively. There were 7
samples between each eomponcnt of x(t)  and also
between each component of e(t), This required that
both [he storage buffers for <(f) and e(t) be 350 (=
7*50) word long. Instead of shifting each element of
each buffer one step backward (1400 read/write
operations) for every cycle (of 1/2048th second),
both ~(t) and e(r) were stored in two circular buffers
to case the rest time implementation. This savings in
real lime implementation came at a price of onc
additional IF statement at every cycle and an
additional buffer of 700 word long for storing a time
index.

The control CyCie wm running at a faster rate than is
required to implement a 3.5 millisecond tap delay
time. This was to avoid aliasing  of higher frequcnuy
comlmncrrts  into the error signat  e(t) and to
maintain smoothness of the output ecmtrol signal, 1 n
a digital control implementation, it is important 10
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Figure 7 Measured time history as the loop is
closed. Control starts at 300 ms.

run the updalc  cycle much faster than the bandwidth
of the actuator (voice coil) and the power amplifier
combination.

The LMS filter response was measured using broad
band disturbance input and is shown in Figure 4.
The filter was implemented with damped integrators
10 limit the peak gains during this measurement. The
response, which has two peaks at the frequencies (12
Hz and 24 Hz) of  the refcrcuce i n p u t  <(1),
corroborates Glovcr’s  results [9].

The plant  was identified by minimizing the 12 norm
of the error [ 13]. An inverse filter was designed to
keep the combined plant and the plant inverse
function phase and magnitude variations within +/-
55° degrees and 5 dB respectively in the frequency
band of 5 H7 to 100 Hz, This is necessary to
main(ain an overall phase margin of over 30°
degrees for stability of the closed loop system since
the disturbance frequency may vary between 5 H7, to
100 Hz. The plant  response and the combined plant
and plant inverse response are shown in Figure 5a
and 5b respectively. This shows a phase variation of
+/-55° degrees that guarantees a net phase margin of
35° degrees for stability.

Figurq 6 and 7 show open and closed loop results
when the disturbance input has frequency
components at 12 Hz and 24 Hz. Figure 5 shows the
frequency spectrum of the disturbance input before
and after closing the loop. A combined reduction of
the componcnt$  of over 25 dB is achieved, Figure 6
shows a time record as the loop is closed. The
contro]lcr  is turned on at 300 millisecond. The peak

value ot’ the diskrrbance  input is rduccd from 0,3 Lb
to lCSS than 0.016 Lb in about  400 milliseconds
which is longer than the predicted time. One reason
for this is that we had to use a srnallcr  ~ than the
maximum allowed by equation 18 in order to keep
the bandwidth of each peak of the filter very small,
A part of this mismatch could also be attributed to
the inqwfect  cancellation of the plant, digitization
error, finite bit accuracy of the digital
inlplcmcntation, nonlincari  ties and other
nonidcalities,

Conclusion

An adaptive notch filter using t.hc Least  Mean
Square algorithm was designed and irnplcrnentcd  to
isolale  a multi-tone disturbance source. Wc showed
that a proper choice of the number of taps and tap
delay time can improve the convergence rate. An
arbitrarily small or large delay time or a small
nurnbcl of taps will have an adverse effect on the
convcrgcncc ra~c, Eixpcrimcntal  implementation
achieved an isolation performance level of 25 dB and
convergence of the error to zero in 400 milliseconds.
Our in~plementation  required a plant inversion filter
over the frequency range in which the frequencies of
the disu.rrbance  varied. As a result the robustness of
the implementation became dependent on the
condition: that the plant dynamics does not change
appreciably over time. In fact, for the method to be
effective, sufficient rnodd damping should be
presen~ to accommodate small parameter variations.
Future work will address the issue of increased
pcrfornlance and on-line plant identification. In
addition, we will be directing our efforts towards
applying the algorithm to a multi-axis isolation
stage.
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